Final Report for HPCC/ESS Round 11

SGI
Thomas Clune and Spencer Swift

June 29, 1999

Round IT of the NASA ESS HPCC Program was a milestone driven, three-
way Cooperative Agreement between government, industry and academia. In
this three year project, NASA acted as a funding agency to drive technology de-
velopment in high-performance hardware and scientific software. SGI (formerly
Cray Research) was selected as the hardware vendor, which was to provide a
suitable high-performance computer and expertise in developing software on the
selected platform. Nine internationally recognized Principle Investigators from
a variety of disciplines were selected to develop and publish research caliber
scientific software capable of running at a sustained 100 gigaflops (GF). These
investigators, the codes and their developers are listed in the Table 1. As the
vendor component of this triad, SGI’s goals were to advance hardware scalability
and reliability, to disseminate the technology of high performance programming
and to demonstrate future paths in HPCC. Throughout this effort, the close
working relationship between SGI and the science researchers has provided us
with a unique and valuable vantage point on the project as a whole.

We begin our report with a historical narrative that describes the various
tasks that SGI engaged in under the Cooperative Agreement. Following the
narrative, we remark on a number of valuable lessons that have been learned
by ourselves and ESS as a result of this collaboration. We conclude with a
discussion of our perception of the current status of the HPCC effort. Although
this project must be considered highly successful by almost any measure and
has met some significant requirements of the science community, there remain
considerable computational challenges that demand ever increasing computa-
tional resources and continuing research into improved algorithms and software
design.

Accomplishments

Hardware

One of the primary responsibilities of the vendor for this project was to provide
state-of-the art hardware as a development and benchmarking testbed. SGI’s
strategy was to use a tiered approach to introduce successive generations of
technology as it became available. This progression began in late 1996 with the
installation of a 512 processor element (PE) T3D. This initial testbed provided
75 gigaflops (GF) peak performance and 32 gigabytes (GB) of main memory to
the science teams. The Principal Investigators were expected to demonstrate
10 GF of sustained performance on the provided hardware, and all nine teams
were successful in meeting that milestone.

In March of 1997, the Cray T3D was decommissioned and replaced by a 256
PE Cray T3E-600 with a 150 GF peak and 32 GB of main memory. Whereas
the processors in the T3D (DEC Alpha EV4’s) had no secondary cache, the T3E
processors (DEC Alpha EV5’s) contained a 96 KB secondary cache, allowing
most codes to obtain a significantly larger fraction of peak performance.

SGI’s original plan had been to upgrade the T3E with 128 additional pro-

| Investigator | Code Name | Researcher(s) | Location
Peter Olson TERRA John Baumgardner | Los Alamos
DYNAMO Gary Glatzmeier UC Santa Cruz
Peter Lyster PSAS J.ay Larson NASA Goddard
Jing Ghuo
GEOS Will Sawyer NASA Goddard
. Darren DeZeuw . . .
Tamas Gombosi BATS-R-US Clinton Groth The University of Michigan
Graham Carey MGFLO Robert Mclay The University of Texas
) Anshu Dubey . . .
Andrea Malagoli | MPS Fausto Cattaneo The University of Chicago
HPS Nic Brummell The University of Colorado
Paul Woodward . . .
PPMMHD David Porter The University of Minnesota
Ed Seidel .
Paul Saylor CACTUS Paul Walker Max Plank Institute
Malcolm Tobias
Mark Miller Washington University
Wai-Mo Suen
Tony Drummond
Robert Mechoso CAMEL Joe Sparh UCLA
John Farrara
David Curkendall | SAR Craig Miller JPL
Herb Siegel
John Gardner CRUNCH3D | Russ Dahlburgh NRL
MHDFCT3D | Rick DeVore NRL

Table 1: Principle Investigators for Round II of NASA’s ESS/HPCC Coopera-

tive Agreement

cessors utilizing a faster clock than the initial 256 PE’s (450 MHz vs. 300 MHz).
Prior to this planned upgrade however, a hardware issue was discovered in the
T3E-600 model computers. Under a well specified, but narrow set of conditions,
applications could cause the entire machine to hang. These conditions involved
memory access patterns and use of the low level communications hardware.
Initially, the bug could be tripped by a code using any of the communication
libraries — Message Passing Interface (MPI), Parallel Virtual Machine (PVM)
and SHared MEMory access (SHMEM) which is an SGI proprietary paradigm.

The affected hardware was used to pre-fetch (or stream) data from memory
upon encountering common memory access patterns. This pre-fetching of data
increased the machine’s effective memory bandwidth. SGI implemented a fix in
the T3E-900 and later model T3E systems, but did not re-engineer the T3E-600.
The only way to completely guarantee that these systems would not hang was
to disable the affected hardware, i.e. the streaming mechanism. This reduced
the effective memory bandwidth and thus lowered the sustained performance of
the system below what was specified in the Cooperative Agreement.

To correct this situation, SGI negotiated to upgrade Goddard’s system to
a 512 PE T3E-600 at no additional cost to NASA. This was in lieu of the 384
PE system with a mixture of T3E-600 and T3E-900 CPUs originally specified
in the Cooperative Agreement. Even with streaming hardware disabled, the
resulting system met or exceeded the performance parameters specified in the
original agreement. An added benefit was that although no code could realisti-
cally benefit from faster T3E-900 processors in a heterogeneous system (software
typically performs no better than on the slowest processor), the excellent scala-
bility of the T3E allowed all of the investigator codes to benefit from the larger
homogeneous system. Thus, Goddard’s system became a 512 PE T3E-600 with
300 GF peak and 64 GB of main memory.

In addition, SGI continued development work to mitigate the effect of the
hardware bug. The operating system, Unicos/mk, had several design improve-
ments incorporated to make it more fault tolerant of the bug. Instead of hanging
the entire machine, only the job running on the affected processor would hang.
The Message Passing Interface (MPI) and Parallel Virtual Machine (PVM) li-
braries were promptly rewritten to recognize these original T3E systems and use
a software fix to circumvent the problem. To allow the investigators to continue
using the proprietary SHMEM communications library, the site-analysts worked
directly with the teams to implement case-specific workarounds to the hardware
bug. By default, the streaming mechanism was deactivated for all users, and
only activated upon certification by the site analysts - a trivial process, in the
case of codes that only used MPI or PVM.

Teams were expected to achieve a sustained 25 GF of performance on this
iteration of the testbed and 50 GF on any vendor supplied platform up to
twice the performance of the testbed. Subsequent to the renegotiation, this
was specified as twice the peak performance of the originally planned 384 PE
testbed. With the upgrade, eight teams were able to reach 25 GF in house and
four of them were able to achieve 50 GF.

During this time, a large group of Guest Investigators were given small allot-

ments of machine time on the T3E to develop massively parallel software. One
of these investigating teams, led by Max Suarez, was particularly successful and
was subsequently able to purchase an additional 512 PEs, effectively doubling
the T3E’s capabilities. Although these additional PEs were primarily slated to
serve the NASA Seasonal to Interannual Prediction Project (NSIPP), HPCC
was able to utilize all 1,024 processors on multiple occasions. Thus, through
a completely unanticipated set of circumstances, the HPCC effort was able to
acquire a vastly more powerful testbed than could have been hoped for at the
onset of Round II. This final version of the T3E has a 600 GF peak performance
and 128 GB of main memory. Upon completion of this project, NCCS will pur-
chase the original 512 PEs (which are still owned by SGI under the terms of the
cooperative agreement) and provide the entire installed system to NSIPP, at a
substantial cost savings over a standard procurement.

As their final performance milestone, each of the science teams was to provide
software that sustained in excess of 100 GF on any existing platform (or set of
platforms). With 1,024 processors, Goddard’s T3E provided sufficient compute
power for the five teams led by Drs. Malagoli, Curkendall, Gombosi, Gardner
and Mechoso to reach that major milestone in house.

We feel that it is also important to note that during the course of the project,
SGI routinely provided access to extremely large T3E systems in the manufac-
turing plant prior to customer shipment. The largest of these was a 1,490 node
T3E-1200E with a peak performance of almost 1.8 teraflops (TF) and over 350
GB of main memory. Many of the teams were able to benchmark their codes on
that system. Several Principal Investigator codes were able to break 200 GF,
one broke 300 GF, and one highly optimized spectral code was able achieve in
excess of 600 GF on that platform.

In a noteworthy example of inter-agency cooperation, researchers from NERSC,
who otherwise only had access to their own 512 PE T3E-900, were able to find
and correct a scaling bug in their software using Goddard’s 1024 PE system and
subsequently run on the large machine mentioned above. This NERSC code was
able to exceed 1 TF, and won the 1998 Gordon Bell prize for performance. To
our knowledge, this was the first true application to run at over 1 TF sustained
performance. In providing this access, NASA was returning a favor to NERSC,
which had previously provided ESS with access on their T3E to enable a critical
performance milestone to be met on schedule.

Software

Although the evolution of the hardware was perhaps the most visible compo-
nent of the testbed, the system software also underwent considerable evolution
during the project. The stability and robustness of the operating system was
increased through several modifications. For example, a PE which “stalls” or
crashes can now be “warm” booted rather than completely mapped out of the
system. In addition, when a code trips the communication hardware bug, only
the processors attached to that job will hang. Previously, the entire machine
would hang, including processors and jobs which were not connected to the

offending application. A new tool, PAT (Performance Analysis Tool), was in-
troduced which used direct measurements from hardware counters to measure
performance, cache misses, load balance, etc. This was a very nice compliment
to the existing tool, Apprentice, which provided source level performance infor-
mation but was somewhat inaccurate and completely useless for uninstrumented
code (e.g. library routines). The strong requirement for absolute compute power
also resulted in transfer of optimization obstacles back to the SGI compiler de-
velopers in a number of instances.

Site Analysts

In addition to providing the hardware and operating environment for the project,
SGI provided two on-site technical analysts who played a critical role in the suc-
cess of the project. These analysts worked with all nine teams and intimately
with eight of them to ensure that performance milestones were met in a timely
fashion and in a manner that was acceptable to all parties concerned. Because
the selected analysts possessed strong technical backgrounds (in astrophysics
and computational fluid dynamics respectively) they were able to communicate
effectively with the science researchers while simultaneously tapping into the
resources available within SGI. Their varied roles included optimization, algo-
rithm development, implementation advice, bug tracking, and even advocacy
in the case of interpreting the intent of the Cooperative Agreement. Even the
temporary access to the large off-site machines mentioned above was largely
enabled by the presence of on-site staff.

Optimization of the codes from the various Principal Investigator teams was
the primary role of the analysts. That effort mostly focused on redesigning the
software kernels to attain higher degrees of cache-reuse. A number of codes came
directly from vector architectures and were particularly inappropriate for direct
optimization via the compiler. Work was also done to exploit some of the T3E-
specific features, such as the E-registers, for local and remote strided memory
movements (e.g. matrix transposes) and the SHMEM communications library
which provides lower latencies than MPI. In some cases, the science teams used
the analysts primarily as consultants. For the majority of cases, though, the
analysts worked closely with the developers, constructing optimized kernels.
Such kernels were always developed in consultation with the original developer
or investigating team. After validation, these kernels were then delivered to the
investigating team for incorporation in their own source code tree.

In those cases where it became clear that no reasonable amount of code op-
timization would allow a performance milestone to be met in a reasonable time-
frame on the installed testbed, the analysts consulted with personnel at larger
T3E sites and SGI manufacturing staff in Chippewa Falls to gain temporary ac-
cess to machines of sufficient power. Fortunately, the requirement for machines
other than the provided testbed was minimal. (10 GF: none, 50 GF: TERRA,
MGFLO, MHDFCT3, CRUNCH3D, 100 GF: CACTUS, MGFLO, TERRA)

Guest Investigators

SGI had a vested interest as well as a mandated milestone requirement to assist
the community of Guest Investigators mentioned above in successfully porting
their codes to the T3E environment. We were pleased to discover that a large
majority of those investigators were successful with little or no assistance from
the on-site analysts. This speaks directly to the ease-of-use of the T3E as well
as to the maturity of the community. The contract requirement to bring ten
Guest Investigators to the T3E was easily met.

Future HPCC Architectures

As part of addressing the future of HPCC, SGI was expected to assist the
teams in preparing for future generations of hardware. For SGI’s roadmap, the
successor to the T3E is planned to be the SGI SN1 to be released in the year
2000. Because much of the hardware and operating system of the SN1 is similar
to that of the SGI Origin 2000, SGI ported three project codes to that platform.
Generally, we have concluded that such porting is straight forward, though the
performance relative to that of the T3E can vary dramatically.

Insights

Round II of the ESS/HPCC effort must be considered a major success by a
number of measures, and the efforts SGI has expended to ensure that success
have identified a number of valuable insights about the strengths and weaknesses
of the project as a whole.

Milestone driven performance

Perhaps the greatest strength and the worst liability of the project was the
heavy emphasis on raw gigaflop performance. On the positive side, the explicit
nature of the metric for success provided clear and challenging goals to the
developers and the vendor. Meeting those milestones on the installed testbed
then allowed the overarching goals of the project to be greatly surpassed on the
more powerful machines available elsewhere. However, the strict nature of these
milestones did not adequately reflect differences among the various algorithms
nor the initial performance variability of the codes as the teams entered the
agreement.

Another strength of the milestone system was that since the individual team
milestones were all negotiated with an open time line, the performance mile-
stones were effectively staggered throughout the three year window. This feature
helped distribute the workload on the testbed and for the analysts.

Performance Optimization

There is no single feature that was critical to the successful performance of the
codes from the participating science teams. Rather, the variety of computational
models presented in this round of research displays a variety of techniques used
to optimize those models. Some of the optimizations utilized were relevant to
most massively parallel (MPP) architectures. Others were specific to the T3E,
but usually implemented in a portable way.

Implications of Cache

On both the Cray T3D and T3E, one of the most important hardware aspects
which software design should address is the limited primary cache onboard the
DEC Alpha chip. Because the latency of moving data from commodity memory
to modern RISC processors is hundreds of times longer than the clock interval
on those processors, a hierarchy of small high-speed memory, known as cache,
is coupled with the CPU to mask the latency. To obtain a substantial fraction
of the peak capabilities of a RISC processor, software must reuse a considerable
portion of the data in the cache. Fortunately, most scientific software can be
designed to at least partially take advantage of cache. On the T3D and T3E,
the cache is relatively small compared to other machines of the same generation,
making such design particularly challenging.

Cache blocking, the process of designing software for maximal cache reuse is
accomplished through breaking the problem up into sections which access and
reuse areas of memory no larger than the cache itself. Examples of this include
setting appropriate limits on loops, by physically partitioning the problem and
by picking a problem size so that it has a natural component the size of the
cache.

Because cache is not a feature unique to the T3E, but is common to all
RISC based machines and in the future even parallel vector machines, cache
blocking will have lasting performance benefits to a piece of software. Since the
T3D and T3E have particularly small caches, codes that have been designed for
those architectures will likely need little or no cache tuning for other platforms.
Nonetheless, where possible, it is best to parameterize kernels in some way to
allow portable and well-tuned cache use.

There are two levels of cache on the T3E. The innermost, smallest and
fastest is the 8 KB primary cache (or DCACHE), while the outermost, larger
and slower secondary cache (or SCACHE) is a 96 KB 3-way set associative
cache. Only on rare occasions is it useful to design for both levels of cache.
Rather, if an algorithm can exploit the DCACHE, then SCACHE is also being
used effectively and can be ignored during the design. Alternatively, if the
small size of the DCACHE is prohibitive, considerable performance may still be
obtained by designing for the secondary cache. Both situations were encountered
frequently in this project.

Memory Access

After cache issues, the next most common performance bottleneck encountered
is memory bandwidth. Memory subsystem technology has not kept pace with
processor technology. As a result, exploiting modern processor performance
requires efficiently accessing memory to achieve near peak memory bandwidth.
The Cray MPP computers do not require uniform memory access to achieve
maximum floating point performance as on the PVP systems. However, near
unit stride references allow single machine load instructions to move more than
one data value at a time and allows the read-ahead or “prefetch” hardware to
perform as designed. The T3D had a simple, but effective, read-ahead feature.
This hardware was redesigned on the T3E to allow prefetching of larger amounts
of data and tracking multiple memory reference streams.

Memory access patterns designed to trigger the “streams” reading hardware
were beneficial for several of the client codes. A natural consequence of designing
memory access patterns for streams activation is that cache use is greatly sim-
plified. In one example, the code TERRA obtained a critical 100% performance
gain from such increased bandwidth and corresponding access simplification.

Several hardware issues related to the above discussion came to the forefront
during this project. The first was the relatively small primary cache available
on the T3E, which increased the difficulty of the task of fitting reasonable size
chunks for many of the algorithms. This diminutive cache meant that many
problems were limited by memory bandwidth rather than CPU performance.
Consequently, codes which were already memory bandwidth limited, could not
benefit from later processor upgrades. For example, when these codes were
migrated to the T3E-900 and T3E-1200, they showed performance gains of 10%
or less over the T3E-600 as compared to the theoretical possibility of a 100%
improvement. This limited performance improvement stems from the bottleneck
incurred in the memory subsystems which are the same on all these machines.
A new memory subsystem with lower latency was introduced in the T3E-1200E.
Models which had previously seen a 10% performance gain going from the T3E
to the T3E-1200, often obtained a 25% gain between the T3E and T3E-1200E.
At the opposite extreme, codes which employed algorithms that efficiently used
cache such as matrix-matrix multiplication were able to see more than a 50%
performance gain between the high and low ends of the T3E series.

Communication

Because the serial optimizations discussed above benefit performance on any
number of processors, only after such issues are addressed is it appropriate
to consider communication performance. Here we assume that the code has al-
ready been parallelized in some manner, for example, with some sort of domain-
decomposition method. Typical serial performance on the T3E-600 was 100
megaflops per processor which is roughly 16% of theoretical peak. All of the
codes submitted by the Principal Investigators in this project use some form of
explicit message passing. The T3E programming environment does not provide

automated parallelism as on the classic Cray vector machines. For this reason,
this NASA project provided the High Performance Fortran compiler from Port-
land Group, Inc. as an alternative implementation to explicit message passing,
but no codes submitted for performance milestones used this. However, some
of the Guest Investigators did use that paradigm.

The large majority of the codes used the MPI paradigm with only one imple-
mentation using the PVM paradigm. The BATS-R-US model of Tomas Gom-
bosi is a prime example of a code using MPI exclusively and achieving high
performance (342 Gflop/s on a 1,490 PE T3E-1200E). While the majority of
the Principal Investigators’ models were originally developed using the MPI
paradigm, some were converted to the SHMEM paradigm or to directly access-
ing the underlying communications hardware for additional performance. While
not portable to other vendors platforms, these code modifications provided sig-
nificant performance benefits in some cases. The trade off between portability
and performance is one that has to be reevaluated on each new machine.

The use of SHMEM is of particular benefit on models with large proportions
of communications between all processors as in the case of pseudospectral codes.
The low latency aspect of the native communications on the T3E permitted near
peak bandwidth on substantially shorter packet lengths than with MPI.

Performance Analysis Tools

Little of this optimization work would have been possible without analysis tools
appropriate to the task. The SGI Apprentice tool was useful for both analysts
and users to profile a run of an entire model. Apprentice provided high-level
aggregate profiling with a source-level interface. A complimentary tool, PAT
provided hardware counter profiling for greater precision, but lacked detailed
source-level diagnostics. Yet another resource was the hardware counter access
library developed by SGI as a part of this project. It requires hand instrumen-
tation of source code but provided key optimization insights on a number of
occasions. This is an unsupported product that, none the less, proved essential
and has migrated throughout this community.

An interesting example of this was understanding the disappointing perfor-
mance of the kernel in CACTUS, a general relativity model from Dr. Saylor’s
team. The algorithm possessed high cache-reuse and yet saw only 15% of peak
performance per processor. The hardware counters demonstrated that the prob-
lem was the insufficient number (31) of floating point registers on the DEC Al-
pha EV5. The complex nonlinearities of the various formulae required numerous
register “spills”, thereby slowing down the code. Although little could be done
to ameliorate that bottleneck, cache blocking allowed the kernel to obtain over
90% speedup going to the T3E-1200E.

Another tool that was key to analyzing the Principal Investigator codes was
the Godiva tool developed in-house as part of the ESS project. In particular, it
was key in identifying the data access pattern and inefficient cache use initially
in TERRA. This tool also requires hand-instrumentation but provides far deeper
analysis of cache use than available with the tools discussed above.

Machine Utilization

As defined in the cooperative agreement, the investigating teams had some
science milestones in addition to the performance milestones discussed thus
far. Because of this duality, system usage policy was carefully structured to
balance the competing needs. The batch queuing system was set up to allow
predominantly development time and short performance benchmarks during
the weekdays. Large blocks of time for scientific and benchmarking runs were
available on week nights and the weekends.

With user input, the parameters defining the job queue structure were con-
tinually adjusted to satisfy the competing needs of the various teams. The
success of this effort is a testament to the system administrators careful obser-
vations of the dynamic behavior of the queuing load and associated bottlenecks.
The administrators were also very adept at manually manipulating jobs to maxi-
mize throughput when the automated systems were not up to the task. Further,
with the addition of the 512 processors belonging to the NSIPP group, the ad-
ministrators helped coordinate and configure the machine for dedicated runs on
all 1,024 processors. This provided an improved avenue for teams to meet their
50 and 100 GF milestones on site.

At the project onset, Unicos/mk did not support any time sharing model
of parallel processes. Later versions of the operating system included Gang
Scheduling, a feature which allows up to two parallel jobs to run on the same
processors. This flexibility enhancing feature was never enabled on the ESS
testbed because of resulting degradation in performance and throughput of ap-
plications. While most high performance computing sites are configured to use
such a system, the system administration at Goddard appreciated the unique-
ness of this site and its requirements and set up the system accordingly.

Conclusion

This project was a successful venture between academia, industry and govern-
ment. The investigators have all pushed their science and computations to new
limits. As the vendor, SGI has significantly increased the robustness and ca-
pabilities of the T3E series of computers and assisted users in moving toward
future hardware products and software paradigms. Most importantly, NASA
has enabled and promoted the use of high performance computational methods
for scientific research, especially among its traditional customers in the form of
the Guest Investigators.

During the course of this project, the status of massively parallel computer
systems as an effective development and production environment for scientific
studies has been amply demonstrated. Progressing from the original T3D, to
the current T3E-600 and through the off site T3E-1200E, SGI has expanded the
capabilities and reliability of these system. The project provided SGI a unique
environment to verify and expand our hardware and software. The primary users
understood that one project goal was to drive further growth and development

10

of scalable computing hardware. As intended, this was a cooperative effort
and investigators appreciated the fact that along with growth would come some
inconveniences.

With the exception of one team’s performance milestones, all the team and
program milestones have been or will be met by the end of the Round II program
in Q4CY99. The reasons for the missed milestones are unrelated to the role of
SGI as the hardware vendor and will be addressed in that team’s final report.

Even with the wide variety of science and models found in this project, there
are a few common conclusions to be made. Primarily, high performance scientific
computing can be achieved on scalable systems using explicit message passing
models in both an efficient and affordable manner. While this perception is
more widely accepted than in years past, this project established new levels of
performance and capabilities.

In addition, the variety of science accomplished proves that there is no single
ideal method for achieving ever higher performance computing. Clearly explicit
message passing works. Either in a portable layered form, such as MPI, or in a
proprietary and more direct form, such as SHMEM. Object-oriented methodol-
ogy is not necessarily an impediment to performance, nor is it always a boon.
Models that were written for vector processor or shared memory machines can
successfully migrate to distributed massively parallel architectures. Likewise,
codes developed using a distributed memory paradigm can migrate to other
architectures.

Portability of high performance scientific simulation software is possible with
reasonable overhead and performance cost. For a scientist to take advantage of
high performance computing, it is not necessary to embrace a single program-
ming model nor throw away an existing one. The key is software engineering and
design control. As with most endeavors, careful consideration of the research
goals, the design criteria and the available resources streamline this effort.

These achievements also exposed the limitations of current technology both
in terms of hardware and in terms of software. Although the majority of codes
scaled well beyond the size sufficient to meet the milestones, many did encounter
an upper scaling limit on the larger T3E systems. In some cases, the compu-
tational abilities have progressed beyond the underlying assumptions inherent
in the physical model: the computational models may continue to produce re-
sults at higher and higher resolutions, but they often lose any physical signifi-
cance. Similarly, some fields of study can specify their implementation with ever
higher resolution, but have not discovered a numerical scheme which achieves
equilibrium within a reasonable time. Implementations may also fail at higher
resolutions when condition number of model numbers diverge.

Finally, there are participants who have computational and physical models
which scale to larger numbers of processors and higher resolutions than seen
during this project. For some of those groups, a significant impediment to
progress is the lack of resources. Complete simulations require weeks, months
or even years of dedicated time on machines of the caliber of the testbed. To
address these and other continually increasing computational needs, continued
national support of high performance computing is absolutely necessary. A

11

follow-on in the form of a Round IIT would certainly be a positive step in that
direction.

12

